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A response to the consultation document ‘A City for All Londoners’ 

Can recent trendbreaks become real tipping points for a new kind of growth? 

 

Ying Jin 
Department of Architecture, Cambridge University (yj242@cam.ac.uk) 

 

I am writing on behalf of the Cities and Transport Research Group at Department of 
Architecture, Cambridge University, in the capacity of an academic working in the 
field of planning and design, and a resident in London’s commuting catchment.   

We strongly support the vision of Good Growth for its new, ground-breaking 
approach across so many policy areas.  We also appreciate its prescient 
acknowledgement of the recent economic, social and cultural shifts that could well 
help build the momentum for implementing Good Growth.   

However, we think that a successful implementation of the Good Growth policies 
would yet require a careful sift of the emerging evidence regarding the nature and 
magnitude of the trend shifts in order to be clear where the biggest gains are in 
momentum building, and where the toughest issues are likely to emerge in the 
process.  This will help enhance the understanding of the benefits and costs of the 
new interventions, and make a coherent case for specific investments. 

  

The challenges   

Our understanding is that the ultimate aim of Good Growth is to steer the growth in 
jobs, housing and services across London in order to benefit all citizens.  This is to 
challenging status quo, rebalance London's economy, relieve congestion and 
housing crises in areas that are under strains and pressures of growth, and create 
new, attractive places for living and working in wider London and - by implication - in 
the wider South East.  This is a powerful idea that can lead to a paradigm change in 
how cities are reshaped for growth, liveability and sustainability.  We are delighted 
that London is leading the way through advancing this vision. 

The main challenge to policy implementation, as we see it, stems from the fact that 
the visionary objective is breaking into a new policy territory where the evidence 
base and political consensus are not strong.  The policy aim to benefit all citizens is 
currently open to a diverse range of interpretations.  

The London Plan is a natural instrument to lead the development and 
implementation of planning and transport policies through translating the vision into 
coherent alternatives regarding investment projects and regulatory measures.  This 
is done through a clear demonstration on the need for growth and where such 
growth needs to happen, so that the stakeholders can make informed political 
choices.   

mailto:yj242@cam.ac.uk
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Since its inception the London Plan has facilitated extraordinary breaks from the 
historic trends: London’s overall population size has seen a dramatic reversal from 
decades of decline to rapid growth, now reaching well above the historic peak; by 
contrast, the overall road travel and traffic has also broken the year on year rises; in 
many areas car ownership has declined as the number of residents grow and their 
incomes rise; rail, Tube, buses, cycling and walking have regained their prominence 
in supporting and improving access to jobs, services and leisure; in a number of 
built-up areas, not least the CAZ, environmental amenities have improved as 
population and building densities increase.  Those trendbreaks are the living proof of 
the effectiveness in the jointed up thinking in the London Plan, and they form the 
foundation for pursuing Good Growth.        

Nevertheless, to achieve the objectives of Good Growth would imply confronting 
many hard issues that hitherto do not have set solutions, and few examples to copy 
from – the development initiatives will need to invent business models that do not yet 
exist.  It is in such ventures that a more structured understanding of the recent 
successes in trendbreaking that would come useful, in gauging potential demand for 
infrastructure, as well as impacts upon the local economy, communities and the 
environment. 

For instance, the London Plan has been very successful in promoting the integration 
of transport, land use and urban design, particularly through promoting growth in 
areas of good public transport activity.  This approach has been very effective in 
regenerating central and inner London sites on the radial routes, and in the process 
reshaping the demand for travel and manage road traffic.  The new Good Growth 
vision calls for spreading economic growth and jobs as well as securing affordable 
housing beyond the current high growth areas.  To what extent will the approach to 
transport/land use integration and travel demand management measures work in 
areas of lower growth (e.g. much of south London), or along orbital corridors? How 
could the patterns of sustainable travel be extended from the successful areas into 
the more challenging opportunity areas in the outskirts?  

A second aspect where more in-depth understanding is needed is the underlying 
background trends of work and lifestyles.  For example, the high end of services is 
expanding and it can better exploit opportunities of tele-working.  What impacts could 
there be if a growing percentage of commuters for CAZ can work in the outer London 
Boroughs one or two days a week upon the local economy, high streets, town 
centres, transport infrastructure, etc?  

The most important aspect is of course to understand the knock-on effects and the 
trade-offs people will make.  For example, on the demand side, how do people trade 
off their access to the buzz of business clusters (which would imply central sites and 
long commuting journeys) against flexible leases and cheap floorspace rents (which 
are vital to start-ups but disappearing fast in high growth areas); on the supply side, 
how do development proposals on parts of the Green Belt with easy access to fast 
public transport compare with intensification within existing suburban 
neighbourhoods? 
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For land use and transport analysts and modellers like us in the research group, it 
would seem that there are two major gaps in our current understanding in this 
context:  

(1) How to translate the past London Plan successes in trendbreaking into an in-
depth and quantified understanding of how integrated transport, land use and urban 
design interventions influence the choices of citizens and businesses, and apply this 
understanding to the specification and assessment of investment proposals in the 
many new situations in wider London where there are few best examples or set 
solutions. 

(2) How to account for the complex knock-on effects and trade-offs that major 
transport or land use interventions will bring about.  This is not just about unintended 
consequences – History of cities including that of London show that in the right 
circumstances the knock-on feedbacks (such as urban development responding to 
rail/Tube lines since the Victoria era) could engender societal benefits a magnitude 
higher than the direct returns anticipated by investors.     

We see emerging opportunities to address Item (1) above through year-on-year 
monitoring using novel analytical methods and Item (2) through a new, city-region-
wide simulation model.  Since we are a leader in the respective fields we will briefly 
comment on our potential contributions to supporting the new London Plan.     

 

Understanding and monitoring the trendbreaks 

Trendbreaks by definition are hard to capture, understand and predict.  Existing 
analyses of trend-breaks tend to focus on changes in overall patterns of e.g. 
population, travel demand, jobs, etc.  This means that when such trend-breaks are 
identified in aggregate, the particular segments and areas where changes occur may 
have already undergone fundamental shifts.  The timelag in detection would delay 
policy responses and narrow the time-window for effective intervention.  Besides, 
aggregate analyses are often unable to predict forthcoming changes.  More crucially, 
any incipient, new ‘trends' are often not a foregone inevitability, but contingent upon 
dynamics among societal changes, policies and regulation.  It is therefore important 
not only to detect the signs of change, but also to monitor them over time.  The 
London Plan analyses have already carried out analyses on population and here I 
provide two recent examples of our analyses on travel demand and jobs. 

Trendbreaks in car ownership and travel demand 

We have been working to detect and interpret early signs of trend-breaks in car 
ownership and travel demand first through a PhD project (see papers [a], [b], and [c]) 
and currently through a DfT Transport Research Innovation Grant at the UK level.  
For this analysis we develop a novel extension to the structural equation model (see 
Appendix A) which makes it possible for the first time to fully exploit the richness of 
recorded data in the UK National Travel Survey (NTS) regarding land use, built form, 
personal and household characteristics, car ownership, etc, and tease out the inter-
dependencies among the personal and households profiles, their residential and job 
locations and the associated built environment characteristics, and their travel 
choices for all purposes and all travel outcomes.      
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This new approach can rigorously quantify the influences upon car ownership and 
travel choices of self-selection and spatial sorting, i.e. individuals and households 
being pre-disposed towards specific built-forms or car ownership status.  So far our 
studies are carried out for the UK as a whole, but some of our findings highlight the 
potential to monitor London more closely, particularly the on-going transformation in 
its built environment.  For instance, Paper [a] shows in dense urban areas, the built 
form characteristics are an increasing influence on car ownership and travel demand 
over the 2000s and early 2010s.  Paper [b] reveals remarkably different built form 
influences upon the travel choices of the resident population living in dense, 
suburban and rural environments.  Paper [c] the built form characteristics could 
potentially account for up to 50% of the influence upon travel distance and travel 
time once the self-selection and spatial sorting effects are accounted for.   

In particular, the papers show that car ownership is neither a simple dependent nor 
independent variable concerning residential or travel choices - instead it is an 
endogenous variable that is interdependent with personal and households profiles, 
consumer choices and the built environment.  This highlights the need to reconsider 
how car ownership is predicted, given the profound influence of car ownership on 
road traffic.   By contrast, the state of the art in car ownership modelling in the UK 
(including though not limited to the most recent version of NATCOP, used in the 
National Transport Model) largely ignores such interdependencies. 

Since the on-going London Travel Demand Survey (LTDS) data series has a similar 
data structure to the UK NTS, there is considerable potential for London Plan to 
consider adopting a similar SEM approach to detecting and monitoring the influence 
of resident socioeconomic profiles, land use and the built environment on car 
ownership and travel demand. The LTDS can be available at a finer geographic level 
than the NTS, thus providing the possibility of categorising the local areas in much 
greater detail, and thus detecting the evolution of land use and built form 
transformation across London.  The SEM analysis can identify trendbreaks in travel 
in different areas and population groups, target help for economically and socially 
disadvantaged travellers, pinpoint new investments, and design effective measures 
to manage car use, especially in the outer areas and orbital corridors where the 
London Plan seeks to transform in the coming years. 

Trendbreaks in the distribution of jobs and employment 

We have been leading an analysis on detecting new trends in the distribution of jobs 
and employment through an on-going consultancy project for the Greater 
Cambridge-Greater Peterborough (GCGP) LEP, in collaboration with Dr Andy Cosh 
of the Judge Institute and Prof Peter Tyler of the Department of Land Economy at 
Cambridge, and LDA-Design Ltd.  Compared with London, the GCGP LEP area has 
a similar, if not more pronounced, differentiation in the distribution of jobs and 
employment.  Here we highlight the potential to exploit emerging data sources to 
carry out analyses at three different levels.  

Our approach to the mapping of jobs and employment has often been integrated with 
advanced spatial equilibrium modelling, e.g. for interpreting and predicting 
commuting patterns (see next section).  However, the emergence of new data 
sources, e.g. those associated with the ONS Real Time Census project and the VAT 
database have broadened the prospects and granularity when mapping the overall 
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patterns of jobs and employment, particularly the interconnections among 
businesses. 

In contrast with population data, jobs and employment are much harder to map.  This 
is particularly because many of the new growth sectors are not well defined by the 
SIC codes.  However, to achieve the Good Growth objectives it would be vital to 
have continuous monitoring of the evolving patterns of jobs and employment, 
particularly in the most dynamic sectors of industry. 

 

The analytics and modelling for medium to long term predictions 

The London Plan has been exemplary in joining up decisions regarding jobs, 
employment, population, housing, commercial floorspace, travel, the natural 
environment and the milieu for culture and innovation.  Given the new challenges, 
particularly with respect to the policy objectives to steer economic and job growth 
and spread prosperity, we recommend that a greater emphasis be placed on the 
analytics and modelling that support this jointed up thinking, particularly in providing 
the evidence for the business case of new investment decisions.   

We have a long tradition of building and using precision land use, built form and 
transport forecasting models for infrastructure investment and urban development 
that are based on rigorous measurements of prices, rents, wages and consumer 
utilities.  Their spatial economic foundation provides the basis for its prominent role 
in developing the business cases in investment decisions in high, mid and low 
income countries1.  In the London area, we built and run a forecasting model for DfT 
and ODPM in their Wider South East Regional Study (2003-2005), which has 
predicted the near doubling of rail travel over the 1997-2016 period.  The Cambridge 
Futures studies2 used a sister model which has made specific assessments of seven 
scenarios (minimum growth, densification, new towns, transport links, greenbelt 
swap, necklace of villages, virtual highway) and a convincing case for policy change, 
which has since reshaped the patterns of development in the Cambridge subregion. 

Our latest model suite is LUISA (see paper [d], [e] and [f]).  It is designed to 
investigate how changes in economic and social policies, land use planning and 
infrastructure service operations affect one another against background trends in 
global trade, production technology, demographics and consumer behaviour.  In 
particular the model predictions are location and year specific at a suitable spatial 
and temporal granularity to provide insights for informing the impacts and phasing of 
investment, regulation, pricing and community action plans.  Given explicit 
assumptions of the background trends and policy designs, it aims to answer 
questions like  

• how changes in economic and social policies affect the location of jobs  

• how changes in job location affect local services, housing demand, commuting, 
business travel, movements of goods 

                                                           
1 For examples of such work, see UK Research Excellence Framework 2014 case study 
http://impact.ref.ac.uk/CaseStudies/CaseStudy.aspx?Id=23292 
2 http://www.cambridgefutures.org/ 

http://impact.ref.ac.uk/CaseStudies/CaseStudy.aspx?Id=23292
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• how the location of jobs and residents affects the demand for land and 
infrastructure services (e.g. multimodal transport services, energy, water, waste), 
and how the supply of land and infrastructure shapes future location patterns. 

• where the future policy hotspots are, in terms of congestion and bottlenecks in 
growth areas, and deficiencies and social exclusion in declining areas. 

Accordingly LUISA has two components: an inter-temporal module for updating the 
background trends and the supply of land, business premises, housing and 
infrastructure services over a period (typically 5-10 years, in line with the Mayoral 
election cycles) and a spatial activity and infrastructure demand module for 
modelling how employers and residents adapt their choices to the available supply of 
land, business premises, housing and infrastructure services at a given year.   A typical 
model application first involves a calibration of both modules for one or more base 
years (for instance in the model for London and the wider south east the base years 
are 1991, 2001 and 2011), where the model is tested to see how well it can replicate 
the observed patterns of location and infrastructure demand both at a base year and 
over time.  For a future year test, the inter-temporal module is first run (for e.g. 2021), 
which is followed by the spatial activity and infrastructure demand module for that year.  
This can then be repeated for further policy horizons (2031, 2041, etc).   

The main inputs for the modules are: 

• Background trends including GDP and foreign trade projections, demographic and 
immigration assumptions including national level population, employment, 
residents socio-economic profiles, technical progress as embedded in baseline 
inter-industry input-output coefficients, base year consumer price elasticities and 
household utility functions   

• Base year stock of land use by use category, stock of business premises and 
housing by category.  Floorspace data is often incomplete in past studies and it 
can be estimated in LUISA through observed workplace and residents data from 
workplace and population censuses   

• Future land use policies including restraints and allocations by location 

• Travel costs and times including any congestion and local access between all 
locations in the study area for both base and future years, for all main travel options.   
This would include mobility as service and ride-sharing options for future scenarios.  

• Unit costs of other infrastructure services, e.g. energy, water, waste, etc.    
Alternative employment growth patterns, demographic projections etc are treated as 
variations in modelled policy/technology scenarios.  

The main model outputs for each modelled year are 

• Changes in urban land use, business premises and housing stock by type in each 
model zone 

• Jobs and residents by category by model zone 

• Production output and prices by zone 

• Annual rents for housing and business premises by zone 

• Wages and disposable incomes by zone 
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• Accessibility to jobs and services by zone 

• Resident utility as a measure of economic well-being for each socio-economic 
group  

• Commuting, education, business and other journeys between zones, using all 
means of travel including walking and cycling 

• Travel demand with respect to transport corridor capacities – this may require 
running the LUISA model in tandem with a multimodal transport model 

• Demand for other infrastructure services.   

The model outputs facilitate pair-wise comparisons which lead to economic 
assessment through levels of output, jobs, prices, rents, and producer and consumer 
surplus by zone and model year.  The segmentation of workers and residents 
according socio-economic profiles enables analyses of fairness in distribution and 
social inclusion.  The forecast demand for land, floorspace, travel and other 
infrastructure services may be input into environmental assessment models for 
resource efficiency and sustainability analyses. 
LUISA can fill a gap between the macro regional economic models and micro-
economic models on the one hand and the conventional land use/transport 
interaction and road traffic model on the other.  Because it is based on rigorous 
economic formulations, it can interface with the macro and micro models, and 
because it is a geographically detailed model, it can interface with the land 
use/transport interaction and road traffic models.  Its main role is to predict and 
assess the financial, economic, social and environmental costs and benefits for 
specific infrastructure and regulatory interventions. 

 

Summary 

We strongly support the vision of Good Growth and would wish to contribute to the 
development of a firmer evidence base, particularly in view of the new challenges. 

Since its inception the London Plan has facilitated extraordinary breaks from the 
historic trends: London’s overall population size has seen a dramatic reversal from 
decades of decline; the overall road travel and traffic has also broken the year-on-
year rises; in many areas car ownership has declined as the number of residents 
grow and their incomes rise; sustainable travel has regained its prominence in 
supporting and improving access to jobs, services and leisure; in a number of built-
up areas, not least the CAZ, many environmental amenities have improved as 
population and building densities increase.  Those trendbreaks are the living proof of 
the effectiveness in the jointed up thinking in the London Plan, and they form the 
foundation for pursuing Good Growth.        

Can the recent trendbreaks become real tipping points for a new kind of growth? We 
think that they can, if there is an in-depth understanding and careful monitoring of the 
new trends.  In other words, a successful implementation of the Good Growth 
policies would greatly benefit from a careful sift of the emerging evidence regarding 
the nature and magnitude of the trend shifts in order to be clear where the biggest 
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gains are in momentum building, and where the toughest issues are likely to emerge 
in the process.   

In line with our specialisms we would propose to contribute in  

(1) the identification and monitoring of the trendbreaks (especially in terms of the 
influence of land use and the built environment on travel demand across London, 
and the evolution in the interconnections of London’s businesses), and  

(2) advanced land use, built form and travel demand modelling, with which we 
examine the business case for the major investment and regulatory projects.  
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The built environment typologies in the UK and their
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categorisation in structural equation modelling
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ABSTRACT
This paper uses a new latent categorisation approach (LCA) in
structural equation modelling (SEM) to gain fresh insights into the
influence of the built environment characteristics upon travel
behaviour. So far as we are aware, this is the first LCA-SEM
application in this field. We use all the main descriptors of the
built environment in the UK National Travel Survey data in
the analysis whilst accounting for the high correlations among the
descriptors – this is achieved through defining a categorical rather
than continuous latent variable for the built environment
characteristics. This novel approach to defining a tangible
typology of the built environment in the UK is capable of making
the analytical results more cogent to formulating new, proactive
land use planning and urban design measures as well as
monitoring the outcomes of on-going planning and transport
interventions. Since travel survey data are regularly collected
across a large number of cities in the world, our approach helps
to guide the design of future travel surveys for those cities in a
way that enhances the analysis and monitoring of the impacts of
planning and transport policies on travel choices.
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1. Introduction

In this paper, we aim to formulate and test a new model that can more precisely measure
the effects of the built environment upon travel demand through a novel extension to
structural equation modelling (SEM). We model the built environment characteristics
as a categorical latent variable by employing latent categorisation approach (i.e. latent
class analysis- LCA) within a SEM framework. We name it a LCA-SEM approach. This
approach goes beyond the existing methods using continuous latent variables; it enables
us to quantify the influence of the built environment on travel behaviour in a tangible
way – as a result, the findings has the potential to be translated into advice on policy inven-
tions and guidance for land use planning and urban design. The statistical analysis is
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placed under a SEM framework to control systematically for the effects of self-selection
and spatial sorting through incorporating a comprehensive range of demographic and
socio-economic variables of households and individuals as attributes describing their resi-
dential areas; we also incorporate controls for the interactions among different purposes of
travel. Without those controls in the SEM, the findings would be seriously biased.

We use an extensive National Travel Survey (NTS) data set from the UK, which has the
appropriate variables and sample size to support the SEM approach. To engage directly
with the current policy concerns of equitable access to job opportunities and employee
productivity growth, our tests are focused on travel by working adults under the retire-
ment age; the tests are repeatable for other types of individuals. The UK NTS has been
collecting an extensive set of information regarding journeys made within the country
by all members of sampled households. Its purpose is to provide annual updates on per-
sonal travel and monitor changes in travel behaviour over time. The survey methodology
has been continuously improved over decades recording the characteristics of the journeys
made, and carefully selected personal, household and circumstantial variables that are
believed to relate to or influence travel behaviour. The list of the variables is arguably
the most comprehensive in travel surveys around the world, and over the years the
survey has built up an impressive sample size.

The NTS has already provided valuable insights into how the UK residents travel and
the data set has allowed the recorded travel patterns to be linked with the personal, house-
hold and circumstantial variables when inferring the key influences of travel behaviour.
However, the characteristics of trip making and the personal, household and circumstan-
tial variables are often highly intercorrelated, notably through endogeneity (e.g. residents’
self-selection and spatial sorting), which has so far restricted the range and depth of the
insights that may be gleaned from the data set. For instance, the multiple descriptors of
the built environment characteristics available in the NTS data are also highly correlated
to the extent that often only one of the descriptors could be used in regression-based
analyses.

2. Literature review

Although the intellectual and practical interests in the complex built environment influ-
ences on travel has a long history (notably, Mitchell and Rapkin 1954; Cervero 1996;
Cervero and Kockelman 1997; Banister 1997; Newman and Kenworthy 1999; Crane
2000; Ewing and Cervero 2001; Stead 2001), it is understandable that a comprehensive
mapping of the effects is still emerging. First of all, the empirical data sets that include
a wide range of relevant variables are difficult to assemble. Secondly, the analytical chal-
lenges that arise from model specification issues such as endogeneities among variables
cast doubt on many estimates (Boarnet 2004; Cao, Mokhtarian, and Handy 2007a;
Silva, Morency, and Gouliasc 2012). Thirdly, the economic, social, cultural and physical
circumstances within which travel is undertaken are shifting substantially through time;
regular and timely updates on the effects – which could provide fundamental insights
into the changing travel behaviour – prove particularly difficult to achieve given the
data and analytical challenges just mentioned.

Whilst data collection and assembly are largely dependent on funding, skills and the
perceived payback, remarkable progress has been made in model specification in recent
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years. In particular, there is a growing body of literature that aims to isolate the built
environment effect after controlling the endogeneities among different factors such as
the interdependencies1 between travel patterns, travel attitudes, built environment charac-
teristics and car ownership (Handy, Cao, and Mokhtarian 2005; Van Acker, Witlox, and
Van Wee 2007; Gao, Mokhtarian, and Johnston 2008; Mokhtarian and Cao 2008; Bohte,
Maat, and van Wee 2009; Cao, Mokhtarian, and Handy 2009; Sun et al. 2009; Cervero and
Murakami 2010; Silva, Morency, and Gouliasc 2012; Sun et al. 2012; Zegras, Lee, and Ben-
Joseph 2012).

Residential self-selection or sorting effect is one of the endogeneities, which has
attracted a great deal of attention. As outlined by Cao, Mokhtarian, and Handy
(2007b), the question is whether neighbourhood design independently influences travel
behaviour or whether preferences for travel options affect residential choice. Using a
self-administered 12-page survey of 1682 respondents from eight neighbourhoods in
Northern California, Cao, Mokhtarian, and Handy (2007a, 2007b) and Handy, Cao,
and Mokhtarian (2005, 2006) analyse the factors affecting car ownership. The respondents
were questioned about their neighbourhood characteristics, neighbourhood preferences
and travel attitude. The data are used to explore the role of the self-selection effect in
explaining travel patterns. Notably, Cao, Mokhtarian, and Handy (2007a) examine the
influences of neighbourhood characteristics, neighbourhood preferences, travel attitudes
and socio-demographics on car ownership in both a cross-sectional and a quasi-panel
context. The findings from cross-sectional analysis show that the correlation between
neighbourhood characteristics and car ownership is primarily the result of self-selection.
Apart from the SEM approach, some recent studies have adopted other modelling tech-
niques such as latent class and random effect modelling through discrete choice analysis
(Walker and Li 2007; Liao et al. 2015; Prato 2015) or propensity scoring and direct match-
ing (McDonald and Trowbridge 2009) to control for endogeneities. Notably, Liao et al.
(2015) examine the residential preferences for compact development in the State of
Utah whilst controlling for heterogeneity in residential location choice arising from house-
hold socio-economic backgrounds and attitudes. Using LCA within a discrete choice fra-
mework, they classify individuals into latent classes based on their socio-demographic
characteristics and attitudes towards the natural and social environments, travel mode
and environmental protection. Their results suggest strong associations between location
choice and socio-demographic status and attitudes. They recommend the use of SEMs as a
more suitable technique to further gauge the endogenous linkages between socio-demo-
graphics, attitudes and residential preferences in future studies.

Silva, Morency, and Gouliasc (2012) is one of a limited few examples, which have exam-
ined car ownership as an intervening variable in influencing total kilometre travelled and
trip frequency. In addition, they control for self-selection effects by modelling concen-
tration, density and diversity as a function of socio-economic attributes in their SEM fra-
mework. Their results suggest that beside socio-economic self-selection effect, built
environment variables significantly affect travel behaviour like commuting distance and
car ownership.

Cervero and Murakami (2010) represent an important landmark in tackling both the
data and model specification challenges through assembling a very large data set from
370 US urban areas around the year 2003 and employing an extensive SEM to examine
the effects of density, diversity, destination accessibility and design on vehicle miles
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travelled (VMT), building on analyses of the first three Ds in Cervero and Kockelman
(1997). They analyse a complex web of interactions among built environment character-
istics, average household income and travel demand, where travel demand is represented
as VMT, percentage of commute trip by private car and rail passenger miles per capita.
Their findings, after evaluating the interrelation between road density and population
density, suggest that the largest reduction in vehicle travel distance comes from the com-
bination of compact design and below-average roadway provision.

The study of temporal changes is so far focused on better quantification of the effects
from quasi-panel data sets. Cao, Mokhtarian, and Handy (2007b) use a quasi-longitudinal
data of movers (688 respondents who changed their residential locations over the previous
year) to extend their former cross-sectional SEM analysis of the interdependencies
between socio-economic factors and built environment characteristics. Their study is
able to identify a small though causal effect of some built environment elements (i.e. per-
ceived spaciousness and living in diverse-land-use areas) on car ownership. This finding is
in contrast with the cross-sectional analysis of Cao, Mokhtarian, and Handy (2007a)
where the correlation between neighbourhood characteristics and car ownership is
found primarily to be the results of self-selection.

Adopting a quasi-longitudinal SEM approach, Aditjandra et al. (2012) report similar
conclusions of the impact of neighbourhood design (e.g. accessibility, safety and attractive-
ness) upon the amount of private car travel after controlling for self-selection. Using Tyne
and Wear metropolitan area as their case study, this is one of the first studies of this kind
which has used British metropolitan data. It is also a recent study which has controlled for
the endogeneity of car ownership in influencing travel, suggesting that neighbourhood
design affects travel behaviour through their influence on car ownership.

Using an age–period–cohort–residential area model, Sun, Waygood, and Huang (2012)
analyse the influence of five separate generation cohorts on automobility: household car
ownership, the automobile mode share and the auto travel time in Osaka metropolitan
area in Japan. Their analyses suggest that the life style expectations, attitudes and values
represented by cohorts along with characteristics of residential area and age, have a
large impact on household car ownership and auto use.

In summary, a large number of existing studies have investigated the influences on car
ownership and travel distance, whereas the prevailing data difficulties meant that the exist-
ing studies tend to focus on one or several of the possible influences out of the bundle of
known factors (such as traverllers’ socio-economic and demographic profiles, accessibility,
car ownership and built environment characteristics), but very rarely the whole bundle. In
addition, we are not aware of any study which has employed LCA-SEM to classify built
environment into distinct categories based on built environment and socio-demographic
characteristics of the residents in order to investigate the variations in influences on travel.
Categorising geographical locations can better quantify the built environment effect to
inform built environment and transport policies and models.

In this context, it would seem that the UK NTS data set has a great deal more to offer
than hitherto explored. To date, only a handful of studies have related travel patterns to the
extensive range of the NTS variables (see Stead andMarshall 2001; Stead 2001; Dargay and
Hanly 2004; Jahanshahi, Williams, and Hao 2009; Jahanshahi, Jin, and Williams 2015);
none except the last one have made use of the improved time series of survey results
since 2002. Methodological limitations tend to be the main reason that has held back a
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fuller exploitation of the comprehensive list of NTS variables. In this context, we develop
here a latent categorical analysis (LCA) in a SEM.

3. Methodology

SEM is an approach to testing complex, multivariate data and differentiating direct and
indirect effects using a combination of statistical data and qualitative causal assumptions.
The definition of SEM was first articulated by the geneticist Wright (1921), the economist
Haavelmo (1943) and the cognitive scientist Simon (1953), and was formally defined by
Pearl (2000) using a calculus of counterfactuals. SEM has gained increasing acceptance
in a wide range of fields including transport and urban studies (Golob 2003; Van
Acker, Witlox, and VanWee 2007; Cao, Mokhtarian, and Handy 2007b; Gao, Mokhtarian,
and Johnston 2008; Weis and Axhausen 2009; Lin and Yang 2009; Cervero and Murakami
2010; Schmöcker, Pettersson, and Fujii 2011).

SEM requires the modeller to provide a conceptual model in the form of a path
diagram, which hypothesises causal effects. It then tests the model on specific data to
determine how valid the hypotheses are. The modeller can reconfigure the conceptual
model through varying the variables and paths based on statistical fit and overall model
performance.

Figure 1. The conceptual structural equation model (SEM) for influences on travel.
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The conceptual model, which is developed in our recent work (Jahanshahi, Jin, and
Williams 2015), is proposed in Figure 1. We include in the SEM (a) a set of explanatory
variables of the main socio-economic characteristics of the individuals and their house-
holds, (b) the built environment characteristics of households’ residential areas modelled
as the measurement indicators of built environment latent variable and (c) household car
ownership. We have chosen three dependent variables, each measuring the amount of
travel distance, respectively, in commuting, shopping and all other purposes. The same
approach may be applied to quantify the effects of the built environment on travel time
or trip frequency.

Here, we have expanded the conventional SEM formula provided in Jahanshahi, Jin,
and Williams (2015) by employing conditional LCA where we model built environment
as a categorical latent variable with socio-demographic characteristics of residents as con-
trolling covariates.

LCA involves a set of observed variables, which are called indicators (i.e. in our case Area
Type, PopulationDensity, Bus Frequency andWalkTime to Bus Stops andRailway Stations
in Figure 1). The indicators form the basis for estimating latent variables such as the Land
Use latent variable in Figure 1. The LCA approach shares the same conceptual aim with
Explanatory Factor Analysis (EFA; Jahanshahi, Jin, and Williams 2015): Both LCA and
EFA are to estimate latent variables from observed indicators. However, the estimated
latent variable is continuous for EFA and discrete (or categorical) for LCA – LCA gives
rise to a latent classmodel because the latent variable is discrete; latent class is characterised
by a pattern of conditional probabilities that indicate the chance that the variables take on
specific values. When it comes to interpretation of results, EFA focuses on grouping contri-
buting variables (such as the contribution of land use area type, density and public transport
access), and can be considered as a variable-centred approach. By contrast, LCA focuses on
grouping survey respondents or cases facing distinct patterns of the contributing variables
into classes, and is thus a respondent-centered approach (Wang and Chen 2012).

The statistical estimations are carried out using the Mplus software (Muthen and
Muthen 2007) in two stages:

Firstly, we use conditional LCA to cluster individuals who reside in similar geographical
location by estimating simultaneously individuals’ built environment class membership
and their socio-economic background; secondly, the SEM is used to account for the inter-
correlations among the built environment classes, the residents’ socio-economic charac-
teristics, their car ownership status and the interactions among different journey
purposes in the quantification of the direct and indirect influences on the amount of
travel carried out for each journey purpose. The second stage estimation is performed con-
ditional on the class membership which is estimated in the first.

To formulate the first stage, let Yij be the jth indicator variable (i.e. population density,
area type, etc.) of the built environment latent categorical variable, Ci, for individual i. As
all our indicators are ordered categorical variables, we can formulate the link function by
defining an underlying continuous variable, Y∗

ij such that

Yij = s|Ci = c⇔ tcj,s , Y∗
ij , tcj,s+1 (1)

where Ci is the latent categorical variable (i.e. built environment), which takes values
between 1,… ,c, and tcj,s are a set of threshold parameters.
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Conditional on regressors X (e.g. our socio-economic characteristics), we can then
present the link function as

Y∗
ij|Ci=k,xi = nkj + KkjXi + 1ij (2)

The normal distribution assumption for 1ij is equivalent to a probit regression for cat-
egorical variable Yij on Xi with the following probability function:

Pr (Yij = s|ci = k) = F[(tkj,s+1 − nkj − KkjXi)]−F[(tkj,s − nkj − KkjXi)] (3)

The class membership probability conditional on X is given by multinomial logistic
regression with the following formula:

Pr Ci = k|Xi( ) = exp ak + gkXi
( )

∑k
s=1 exp (as + gsXi)

(4)

The joint probability of indicators or observed-data likelihood is then given by

Pr (Yi1 . . .Yij) =
∏

i

∑c

k=1

Pr (Ci = k)
∏

j

Pr (Yij = s|ci = k) (5)

EM algorithm is then used for estimating the parameters and class membership where
the latent variable Ci is treated as missing data. We first compute the posterior distribution
for the latent variable. The posterior conditional joint distribution is calculated as

Pr Ci = k|∗( ) =
Pr (Ci = k)

∏
j
Pr (Yij = s|ci = k)

∑c

k=1
Pr (Ci = k)

∏
j
Pr (Yij = s|ci = k)

(6)

which is estimated given the parameters.
Given the class membership, model parameters are then estimated through maximising

Equation 5. The model is solved iteratively until reaching convergence.
Equations 7–9 specify the SEM, which is estimated within each latent class for the

second stage of our modelling. The subscript for latent class membership is dropped
here for simplicity

Yij = nj + KjXij + eij (7)

where Yij refers to the ith respondent and jth vector of a dependant variable (e.g. travel
distance for commuting to work) and Xij is the vector of all individual level covariates.
nj and Kj are the vectors of intercepts and the matrices of regression parameters
correspondingly.

eij is a vector of residuals with a mean of zero and covarianceQ. Where the jth observed
dependent variable, Yij, is a normally distributed continuous variable (e.g. the distance tra-
velled by journey purpose), the residual variable eij is assumed normally distributed. For a
dichotomous variable Yij (i.e. car ownership), a normality assumption for eij is equivalent
to the probit regression for Yij on Xij.

2
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The observed-data likelihood is given by
∏

ij

fij(Yij) (8)

where fij is the likelihood function for Yij.
The expected log-likelihood is then maximised with respect to model parameter esti-

mation:
∑

ij

log ( fij(Yij)) (9)

To avoid the trap in a local maxima for the log-likelihood, we use many different sets of
starting values in the iterative maximisation procedure to ensure that the maximised value
of the likelihood function is replicated.

Because the NTS is a very large data set, we consider the coefficients to be statistically
significant only when the estimated coefficients have a ≥99% confidence interval (i.e. the
respective p-values are ≤1%).

4. Data

Substantial changes were made to the NTS organisation and method just before 2002
(Hayllar et al. 2005). For this paper, we therefore use the NTS data for 2002–2010,
which forms a consistent time series of 9 years. The commuting, shopping and other jour-
neys by working adults, which are used in the SEM model tests, consist of 933,296 trips
and 8.2 million passenger miles travelled in the 9-year sample.3 For each journey, the
NTS provides a household weight to account for non-response and a trip weight for
the drop-off in the number of trips recorded by respondents during the course of
the survey week, uneven recording of short walks by day of the week and the short-fall
in reporting long distance trips. This is to ensure that the data are representative of
travel of an average week for the UK population as a whole.

As outlined in the NTS technical report (2013),4 NTS data were organised into multiple
levels: households, individuals, vehicles, long distance journeys made in the seven days
before the placement interview or the Travel Week, whichever date was the earliest,
days within the Travel Week, journeys made during the Travel Week and the stages of
these journeys. In our analysis, we have used five of the linked attribute tables (i.e. up
to the journey level), which are required for estimating average travel distance, as
shown in Table 1.

Table 2 presents the headline averages of travel distance per week, which provide a
benchmark for the analysis of the findings.

Figure 2 is the specific path diagram of our SEM model. The diagram is based on the
conceptual model (Figure 1). Similar to linear regression models, for each categorical vari-
able, one of the categories is used as the reference category. The estimated coefficients for
all other categories are then evaluated relative to the reference one. In Figure 2, the refer-
ence categories are shown in parentheses. For instance, the middle level income group
‘Income level of 25k–50k’ is chosen as the reference category for the lower and higher
income categories.
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Table 1. A list of linked NTS data tables that are used in this paper.
Data table Data contents used for the analysis

Household Household related variables – numbers of resident adults [1 adult, 2+ adults], annual income [less
than £25k (IncomeLess25k), £25k to £50k, more than £50k (IncomeOver50k)], head of household
occupation [manual, skilled manual (SkillManual), white collar clerical, professional (Prof)],
frequency of local buses [level 1 for less than one a day progressing through to level 5 for at least
1 every quarter hour], walk time to bus stop [6 minutes or less, 7 to 13 minutes, 14 to 26 minutes,
27 to 43 minutes, 44 minutes or more], walk time to rail station [6 minutes or less, 7 to 13
minutes, 14 to 26 minutes, 27 to 43 minutes, 44 minutes or more], car ownership [no car,1+ car]

Individual Individual related variables – gender [male, female], work status [full time (FT), part time (PT)]
Journey Variables specific to each journey made – trip purposes from, trip purposes to, travel time, travel

distance, number of trips. We modelled three outbound travel purposes: Home-based work
(HBW), Home-based and non-home-based Shopping (Sh) and all Other home-based and non-
home-based purposes categorised as other trips (Oth)]

Postcode sector unit
(Psu.)

Variables specific to the postcode sector unit in which the household is located – area type [from
level 1 for rural areas progressing through to level 5 for London, the top metropolitan area],
population density [level 1 for lowest density, i.e. under 10 persons/hectare, progressing through
to level 10 the highest which is ≥50 persons/hectare]

Table 2. Average travel distance per person per week: working adults.
Period Home-based commuting Shopping Other purposes All

2002–2010 30.3 11.3 72.9 114.4
2002–2006 30.9 11.7 75 117.6
2008–2010 29.2 10.6 69.5 109.3
Difference −1.7 −1.0 −5.5 −8.3
% Difference −0.1 −0.1 −7% −7%
Note: The data in this table represent outbound travel by working adults during a 7-day week. They exclude any return trips
and any travel by people other than working adults. The distances are in miles per week.

Figure 2. The SEM structure for testing the NTS data.
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5. Main findings

A SEM test is characterised by its extensive range of outputs, with reams of tables. To
present succinctly, we summarise the main findings in three steps. First, we present the
latent built environment classes, their definition and unconditional and conditional prob-
abilities for individuals to be in each class. Second, we compare the socio-economic
characteristics of residents within the built environment latent classes. Finally, within
each built environment class, we explore influences on travel distance by journey
purpose after controlling for interactions among journey purposes as well as endogeneities
arising from self-selection, spatial sorting and car ownership.

5.1. Latent classes of the built environment in the UK

The basic approach to categorisation of latent classes of the built environment is to run the
LCA using NTS variables that describe the relevant characteristics of the areas the respon-
dents live in.We have developed an extended, conditional LCAmodel, in which we include
the demographic and socio-economic characteristics as covariates (cf. Figure 2). This
involves a simultaneous estimation of the influence of the residents’ demographic and
socio-economic profiles so that the effects arising from spatial sorting are accounted for.

Our LCA is built on the EFA for continuous latent variable analysis in Jahanshahi, Jin,
and Williams (2015). In the EFA, five built environment attributes namely ‘area type’,
‘population density’, ‘frequency of local buses’, ‘walk time to bus stop’ and ‘walk time to
rail station’ are found to have large loading factors, sufficient to be considered as the defin-
ing characteristics of the built environment. The LCA that defines built environment as
discrete categorical classes (as opposed to defining a continuous latent variable for the
built environment in EFA) has similarly found those five attributes to have large
loading factors. The availability of five attributes with large loading factors can allow us
to define up to three distinct built environment classes with the sufficient degree of
freedom for model estimation.

Our conditional LCA identifies three latent built environment classes with an entropy
of 0.832.5 This suggests that the latent classes are very well defined. A cross-tabulation of
the most likely latent class membership (row) by latent class (column) in Table 3 corro-
borates the high entropy value.

Panel 4a of Table 4 shows the unconditional and conditional probabilities of individuals
in each latent class. Based on the estimated model, Classes 1–3 contain, respectively, 18%,
54% and 27% of all working adults.

Conditional probabilities further reveal the patterns of the latent classes benchmarked
by the specific characteristics of the built environment (Panel 4b of Table 4). For example,
residents in Latent Class 1 consists of, respectively, those from the medium urban, big
urban, metropolitan and London area types (of, respectively, 2.2%, 15.8%, 16.2 and

Table 3. Average latent class probabilities for residents’ most likely latent class membership (row) by
latent class of the built environment (column).

Class 1 Class 2 Class 3

Class 1 membership 0.917 0.083 0
Class 2 membership 0.045 0.919 0.036
Class 3 membership 0 0.061 0.939
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65.8%), with no one from rural or small urban (see Panel 4b–1). The members of this class
also reside in the densest areas (see Panel 4b-2) and benefit from the most frequent buses
and highest level of accessibility to public transport (see Panel 4b-3 to 4b-5). The clear
dominance of London residents in this latent class prompts us to label it ‘London domi-
nated’. Similarly, the dominance of medium urban in Latent Class 2 (of 46.8% of the resi-
dents in this class) and the dominance of rural in Latent Class 3 (of 72% of residents) give
rise to the labels ‘Medium urban’ and ‘Rural areas’, respectively. The individuals in Class 3
reside in the least dense area with the least convenient access to public transport. Those in
Class 2 sit between Class 1 and Class 3 in terms of population density, bus frequency and
public transport access.

A comparison across the three columns of latent classes gives us an insight into the dis-
tribution of residents within a NTS area type across the latent classes. For instance, for the
London area type, 93.7% of the residents there belong to Latent Class 1.6 This composition
by NTS area type is presented in Figure 3.

Table 4. Unconditional and conditional probabilities for the three-class built environment LCA model.

Indicators

Latent class

1 – London dominated
(N = 13853)

2 – Medium urban
(N = 40874)

3 – Rural areas
(N = 20301)

Panel 4a: Unconditional probabilities
0.18 0.54 0.27

Panel 4b: Conditional probabilities
4b-1: Area type
Rural 0 0.003 0.720
Small urban 0 0.080 0.179
Medium urban 0.022 0.468 0.078
Big urban 0.158 0.231 0.022
Metropolitan 0.162 0.201 0.001
London 0.658 0.015 0

4b-2: Population density (person/hectare)
Under 10 0.003 0.200 0.949
10–14.99 0.021 0.125 0.027
15–19.99 0.019 0.134 0.019
20–24.99 0.020 0.119 0.005
25–29.99 0.039 0.122 0
30–34.99 0.048 0.089 0
35–39.99 0.053 0.080 0
40–49.99 0.164 0.096 0
50–59.99 0.168 0.021 0
over 60 0.465 0.013 0

4b-3: Bus frequency
Less than once a day 0 0.008 0.206
At least once a day 0 0 0.027
At least once every hour 0.005 0.128 0.432
At least once every 30 minutes 0.131 0.462 0.283
At least once every 15 min 0.864 0.401 0.051

4b-4: Walk time to bus stops
44 min and more 0 0 0.021
27–43 min 0 0.001 0.021
14–26 min 0.007 0.013 0.057
7–13 min 0.072 0.078 0.108
6 min or less 0.921 0.908 0.793

4b-5: Walk time to rail station
44 min and more 0.093 0.336 0.665
27–43 min 0.176 0.207 0.103
14–26 min 0.355 0.292 0.129
7–13 min 0.224 0.105 0.058
6 min or less 0.150 0.060 0.044
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5.2. Spatial sorting of residents among latent built environment classes

The second step of the analysis is to understand how the latent built environment class
membership interacts with the demographic and socio-economic profiles of the residents
– self-selection and spatial sorting of the residents of different demographic and socio-
economic profiles often has a material bearing on where they live. This is carried out
through the estimation of the covariates in the LCA.

The results of this analysis of the covariates are reported in terms of odds ratios with one
of the latent classes designated as a reference class. This is shown in Table 5 where Latent
Class 2 (Medium urban) is chosen as the reference class. For residents of a particular demo-
graphic or socio-economic characteristic, an odds ratio for a given class of built environment
that is higher than 1 indicates that those residents are more likely to live in that class of built
environment than in the reference class areas. Similarly, an odds ratio less than 1 implies the
reverse. For instance, the odds ratio for beingmale is 1.077 for the ‘London dominated’ class,
and this means that male workers are 7.7% more likely to live in the ‘London dominated’
areas than the ‘Medium urban’ areas.7 The magnitudes of the odds ratios indicate the
strength of that difference. For instance, further down in Table 5 the odds ratio of skilled
manual workers suggest that they are 15.8% more likely to live in ‘Rural areas’ and 43.1%
less likely to live in the ‘London dominated’ areas than in the ‘Medium urban’ areas.

Not surprisingly, the results in Table 5 suggest that relative to the Medium urban class,
working adults who reside in the ‘London dominated’ areas are more likely to be male,
coming from one adult households, and with full-time working patterns; professionals
and skilled manual workers are more likely to be found in the ‘Rural areas’ class. As for
household income profiles, the ‘London dominated’ class has 56.5% more high-income
households (with income >50k per year) than the ‘Medium urban’; the ‘Rural areas’ by
contrast has 17.6% more high-income households than in ‘Medium urban’.

5.3. Influences on distance travelled

Table 6 shows the influence on distance travelled for different purposes across the latent
built environment classes. The incorporation of the LCA provides a unique opportunity to

Figure 3. (Colour online) Composition of built environment latent classes by NTS land use area type.

70 K. JAHANSHAHI AND Y. JIN

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

am
br

id
ge

] 
at

 0
6:

41
 0

6 
Ja

nu
ar

y 
20

16
 



decompose precisely the influences both for each of the demographic and socio-economic
variables and across the different built environment classes. Furthermore, to identify the
additional insights of incorporating a categorical built environment variable in the SEM
model, we compare results from our new model with those from a constrained SEM
where the model parameters do not vary across the built environment classes. This con-
strained SEM is typical of the existing models that do not account for the specific influ-
ences of the built environment characteristics.

To aid intuitive interpretation of the model outputs, in Table 6 we first define a refer-
ence group of residents who are female, part time working in white collar clerical occu-
pations from a car-owning household with more than one adults and a household
income of 25–50k per year. The first line of the model outputs in Panel 6a reports how
this group differ in their average weekly commuting distances among the three built
environment classes through the model intercept values: those live in the ‘London domi-
nated’ areas travel 10.4 miles per week, in ‘Medium urban’ 9.6 miles and in ‘Rural areas’
13.59 miles. Similarly, the first lines under Panels 6b and 6c in Table 6 show that for shop-
ping and other travel purposes, the more rural the area, the longer the distances travelled
which is intuitive. As expected, the reference group residents commute well below the
working adult average of 30.3 miles per week for all classes of areas, but for shopping
and other travel (for which the average weekly distances travelled are, respectively, 11.3
and 72.9 miles) they travel shorter than the average in more urban areas and longer in
the rest (cf. Table 2).

The model intercepts and coefficients can help us quantify the levels of influences of
the demographic and socio-economic variables in the context of the land use latent
classes. Whilst an intercept represents the average travel distance of the Reference
Group, the coefficients indicate how much influence a change in the demographic
and socio-economic profiles has. The general patterns of small coefficients for the
London-dominated class (i.e. relative to its model intercept), and the large ones for
the other two land use latent classes indicates that the influence of the built environ-
ment on travel is relatively strong in the London-dominated class; this influence is
much weaker in areas of the other two classes relative to that of demographic and
socio-economic profiles.

For instance, the coefficient for high-income households (households with income
more than £50k) in the London-dominated class is 2.1, which shows that by virtue of
the higher income, such commuters travel 2.1 km more relative to the Reference

Table 5. Odds ratios of demographic and socio-economic covariates.

Covariates Built environment latent classes

1 – London dominated 2 – Medium urban 3 – Rural areas

Male 1.077*** Used as a reference latent class 1.077***
Full-time working 1.115*** 0.87***
1 adult households 1.61*** 0.866***
Semi- or unskilled manual workers 0.807*** 0.978
Skilled manual workers 0.569*** 1.158***
Professionals 0.797*** 1.294***
Household income less £25k 1.055 0.969
Household income more than £50k 1.565*** 1.176***

Note: Base or reference group is Class 2 (medium urban class).
***Significant within 99% CI, **significant within 95% CI, *significant within 90% CI.
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Group’s intercept of 13.59 km, or 20.2% more. By contrast, commuters from high-income
households in medium urban and rural areas travel, respectively, 54.2% (coefficient 5.2
divided by intercept 9.6) and 34.7% (4.71/13.59) more. This pattern is mirrored by the
commuting distances for commuters from households with less than 25k income per
year. Similarly, households with no cars in London travel only 23.7% less (−2.46/10.39),

Table 6. Direct influences on travel distance (in miles) arising from traveller profiles.

Direct influence
Constrained

model
1 – London
dominated

2 – Medium
Urban

3 – Rural
areas

Class 1 vs.
Class 3 Wald
test p-value

Panel 6a. Direct influences on commuting
Model intercept for the reference group,
which is represented by a female, part
time working white collar clerical worker
from a car-owning household with more
than one adults and a household income
of 25–50k per year

10.39*** 9.60*** 13.59***

Male 10.66*** 6.31*** 11.84*** 10.84*** 0.000
Full-time working 16.8*** 12.83*** 15.96*** 20.54*** 0.000
1 adult households 2.88*** −0.08 3.64*** 4.87*** 0.004
Semi- or unskilled manual workers −3.13*** −0.35 −3.11*** −5.33*** 0.001
Skilled manual workers −4.4*** 0.01 −3.87*** −7.73*** 0.000
Professionals 2.68*** 3.1*** 2.3*** 2.71** 0.787
Household income less £25k −4.32*** −2.32*** −4.53*** −5.18*** 0.023
Household income more than £50k 4.45*** 2.1*** 5.2*** 4.71*** 0.043
No car in household −4.6*** −2.46*** −5.79*** −9.25*** 0.000

Panel 6b. Direct influences on shopping
Model intercept for the reference group,
which is represented by a female, part
time working white collar clerical worker
from a car-owning household with more
than one adults and a household income
of 25–50k per year

7.75*** 12.41*** 20.36***

Male −3.13*** −1.79*** −2.7*** −4.99*** 0.000
Full-time working −0.98*** −0.58*** −0.7 −1.5*** 0.074
1 adult households 0.69*** 0.79*** 0.84*** 0.43 0.570
Semi- or unskilled manual workers −1.37*** −0.42 −1.54*** −1.47** 0.176
Skilled manual workers −1.12*** 0.02 −1.26*** −1.43** 0.028
Professionals −0.02 0.16*** 0 −0.25 0.511
Household income less £25k −0.56*** −0.28*** −0.64*** −0.28 0.989
Household income more than £50k 007 −0.28** 0.01 0.47 0.207
No car in household −3.83*** −2.58*** −4.41*** −7.48*** 0.000

Panel 6c. Direct influences on other purposes combined
Model intercept for the reference group,
which is represented by a female, part
time working white collar clerical worker
from a car-owning household with more
than one adults and a household income
of 25–50k per year

44.37*** 55.99*** 79.40***

Male 15.03*** 7.12*** 15.55*** 19.03*** 0.000
Full-time working 2.25** 0.85 1.6 4.31*** 0.1881
1 adult households 20.33*** 18.67*** 20.59*** 23.74*** 0.224
Semi- or unskilled manual workers −19.72*** −14.11*** −16.67*** −29.05*** 0.000
Skilled manual workers −20.04*** −15.64*** −17.15*** −27.55*** 0.000
Professionals 13.82*** 6.43** 15.08*** 15.14*** 0.031
Household income less £25k −10.13*** −7.78*** −9.18*** −12.14*** 0.143
Household income more than £50k 16.88*** 14.23*** 15.44*** 21.45*** 0.043
No car in household −26.06*** −16.06*** −32.13*** −47.42*** 0.000

***Significant within 99% CI, **significant within 95% CI, *significant within 90% CI.
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whilst those in medium urban and rural areas, respectively, 60.3% (−5.79/9.6) and 68.1%
(−9.25/13.59) less.

The rest of the model results provide opportunities to compare the journey distances both
within each column (i.e. holding the built environment class constant and decompose the
influences of demographic, socio-economic and car ownership characteristics) and across
the columns for each row (i.e. to identify the influence of the built environment, given a par-
ticular demographic, socio-economic and car ownership profile). Note that the values for the
demographic, socio-economic and car ownership variable rows are additive within each
column, which allows the readers to work out the specific distances travelled for an arbitrary
type of resident. The results are intuitively correct and they provide a substantially more
robust set of quantifications of the influences upon distance travelled by working adults.
For instance, existing models suggest that those households with no cars tend to travel
much shorter distances than those with cars. However, when we take account of the latent
built environment classes, then we see considerable variability than suggested by the existing
models: in the ‘London dominated’ areas, those with cars only commute slightly more (2.46
miles per week or 8% of the national average) than those without cars. In ‘Rural areas’, the
corresponding value is 3.7 times higher or 9.25 miles more per week.

6. Conclusions

This paper uses a new conditional LCA in SEM to gain new insights into the influences of
the built environment characteristics upon travel behaviour through the use of the UK
NTS data for 2002–2010. Conditioning on demographic, socio-economic and car owner-
ship characteristics of the households and individuals recorded in the NTS, the LCA
reveals three distinct built environment categories in the UK: London dominated,
Medium Urban and Rural areas. The latent classes are defined based on a specific combi-
nation of the built environment characteristics, which provides the insights into their joint
influences upon travel decisions.

The LCA-SEM area categorisation reveals profound variations across geographic areas
in the joint influences of demographic, socio-economic, car ownership and built environ-
ment profiles on distances travelled, with a much firmer grip on the endogeneity effects
such as self-selection, spatial sorting and car ownership status. Our findings confirm
that the built environment characteristics remain an important influence upon the dis-
tances travelled even after controlling for the endogeneities. This is evidenced by strong
variations in our model intercepts in addition to the variations in influences upon
travel distance across built environment latent classes.

For instance, although no-car owning households tend generally to travel shorter dis-
tances, the influence of car ownership upon travel is not quite the same across all areas.
Significant variations in influences also exist for the majority of socio-economic character-
istics and on all travel purposes. Broadly speaking, in the London-dominated class (which
include 18% of the UK population) the influence of the built environment on travel is
strong relative to demographic, socio-economic and car ownership profiles – here the
built environment contributes significantly to the shaping of travel choices; in the Rural
Areas class (27% of population), the influence of built environment is weak relative to
the demographic, socio-economic and car ownership profiles. Surprisingly, although the
Medium Urban areas look in many ways similar to the London-dominated ones in
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physical built-upness, its built environment has just as a weak influence as the Rural areas.
This indicates that the main challenges for professionals working towards sustainable
transport solutions are to do with developing effective planning and design measures in
the Medium urban areas (which contains 54% of population and may have already devel-
oped many of the land use planning measures to influence travel), in order to enhance the
influence of the built environment on travel choices.

The main new contribution of this extended LCA-SEM model here is that the built
environment as per the NTS descriptors can now be identified as tangible categories
that directly relate to people’s daily experiences, which makes the model cogent for moni-
toring the evolution of the urban and rural areas as they are transformed for better sustain-
ability, and for identifying new interventions in land use planning and urban design to
enhance the policy impacts on sustainable travel through shaping specific built environ-
ment typologies. Since travel survey data are regularly collected across a large number
of cities in the world, this approach also helps to guide the design of those surveys in a
way that can contribute to the analysis and monitoring of the impacts of planning and
transport policies on travel choices.

Notes

1. Here we wish to highlight the bi-directional influences between built environment and travel.
While this paper mainly examines the influences of the built environment on travel behaviour,
it should be noted that travel behaviours can also influence the built environment over time.

2. For more information on modelling categorical data in SEM and MPLUS, see Muthén (1984).
3. For comparison all the commuting, shopping and other journeys in the NTS sample for all people

(both working adults and others) total 1.84 million trips and 13.5 million passenger miles travelled
for 2002–2010. The total return journeys in the sample, which are not used in the LCA-SEM
model, total 1.36 million trips and 9.7 million passenger miles travelled for the same period.

4. The report can be found at https://www.gov.uk/government/uploads/system/uploads/
attachment_data/file/337263/nts2013-technical.pdf.

5. Entropy is measured on a 0 to 1 scale with the value of 1 indicating the individuals are perfectly
classified into latent classes, and a value that is greater than 0.8 indicates a well-defined categ-
orisation (Wang and Wang, 2012).

6. (0.658 × 13853)/(0.658 × 13853 + 0.015×40874 + 0.00×20301) using data in Panel 4b-1 of Table 4.
7. This result is different to that produced by Jahanshahi, Jin, and Williams (2015) where built

environment is modelled as a continuous latent variable – their results in that paper indicate
that male workers tend to commute from less dense and more rural locations with less frequent
bus services, which is counterintuitive. This highlights the benefits of modelling built environ-
ment as a categorical as opposed to a continuous latent variable.
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Abstract. This paper presents a recursive spatial equilibrium model for urban activity 
location and travel choices in large city regions that anticipate major development or 
restructuring. In the model, producer and consumer choices that adjust quickly to stimuli 
reach temporary equilibria subject to recursively updated activity churn, background 
trends, estate development, and transport supply. The city region’s performance at each 
time horizon affects the recursive variables for the next. The model builds on field leaders 
of  urban general equilibrium, spatial interaction, and nonequilibrium dynamic models, 
and offers theoretical and practical improvements in order to fill an important gap in long-
range urban forecasting. Linking the equilibrium and nonequilibrium models enables the 
simulation of  path dependence in urban evolution trajectories that neither could produce 
in isolation. At the same time the model provides quantification of  impacts of  different 
policy interventions on a consistent basis for a given time horizon. The model is tested 
on the main archetypal urban development strategies for large-scale development and 
restructuring.

Keywords: land-use and transport model, infrastructure investment, travel demand 
forecasting, spatial equilibrium, recursive dynamics, urban restructuring, urban futures

1 Introduction
The 21st century as an ‘urban century’ has started to witness urban development and 
restructuring that are unprecedented in nature and scale. Over the next thirty to forty years 
accelerated urbanisation and lifestyle changes in the emerging economies are expected to 
lead to city building of a magnitude hitherto unseen in human history (UN Habitat, 2008); 
in countries that are already urbanised, some cities are still growing strongly. Numerous 
existing cities face challenges of restructuring and retrofit to tackle productivity growth, 
urban poverty, energy inefficiency, high per capita resource use, environmental degradation, 
and aging of citizens (Batty, 2010; Wegener, 1982; 2011). Bolder interventions have been 
called for (Fiorello et al, 2006; Wegener, 2011). Large‑scale urban change may result from 
major new growth or restructuring.

Evolution in the governance of cities has cast a new light upon growth and restructuring. 
In addition to existing powers of land‑use planning and regulation, municipal governments 
are often offered responsibilities for infrastructure investment, major transport and urban 
service operations, and ultimately attracting inward investment. For instance, such powers 
have been gradually decentralised to the municipal level in China since the 1980s (Lin and 
Liu, 2000); the on‑going implementation of the 2010 election pledge (The Conservative 
Party, 2010) in the UK is a prominent example among the developed countries.

Since the 2008 financial crisis, productivity growth has jumped to the top of the policy 
agenda across the world’s municipalities. Under tight public finance, productivity growth 
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holds the key to social and environmental policies since the large investments required 
ultimately have to come from increased per capita output.

This modifies the context for computer modelling that supports municipal decision 
making. It is instructive to review the experience in London, a UK city which has over the 
years seen a fair share of active development and use of computer models for major policy 
decisions on both new development and restructuring.

1.1 Policy concerns versus unmet modelling needs
In any city the most relevant policy concern is the viability to fund (electoral) commitments 
to local constituencies. This was true even before the financial crisis. Volterra and CBP (2007, 
page 47) provide an insight into the unmet modelling needs in London, particularly concerning 
“the links between productivity, wages and rents and the full implications of these for output 
growth”. They go on to list the unanswered questions as: What are the behavioural responses 
to overcrowding and to new transport availability? What are the effects of co‑location and 
clustering of different firms, and do these vary among industries? What are the trade patterns 
and how do they change? How can we test that the models we use reflect the world in which 
we operate?

Decentralised decision making strengthens the above concerns. Local authorities are 
focused on the ‘business case’ of any intervention and feasibility under financial and fiscal 
constraints. Since any assessment of a large development proposal will be subject to debate, 
the models must be transparent and empirically robust (Rosewell, 2011). The criticism is 
that methods for assessment (eg, of transport investments in the UK) are “unconnected to the 
real economy” (Wenban‑Smith, 2011). Similarly unmet policy needs are apparent across 
the OECD (OECD, 2012). In the developing countries our experience shows that the policy 
concerns are similar, but the modelling tools remain unavailable in most cities.

It seems that it was not technical complexity of models per se that deterred policy 
applications. For instance, the aspiration for identifying ‘the full implications’ of productivity, 
wages, and rents shows that there is a genuine appetite for general equilibrium modelling. 
However, large urban models are seen as ‘black boxes’ by critics (Lee, 1973) as well as 
modellers (Eliasson and Mattsson, 2001), and users often avoid the large models, even if 
that means reduced form rather than general equilibrium modelling (DfT, 2006; Volterra 
and CBP, 2007). Short mayoral election cycles and the need to face the public call for quick 
turnaround and transparency.

The world after the financial crisis does not seem to have fundamentally altered the key 
modelling questions. Rather, the need to understand drivers to productivity and offer practical 
insights to policy making are highlighted. This means that the models need to operate in 
the world of markets, prices, finance, budget constraints, physical and institutional inertia, 
individual behaviour, and their combined impacts.

1.2 Existing modelling methods
It is useful to contrast user needs with what is already available for policy modelling. Such 
models sprang from many different fields and disciplines, and they are far from paradigm 
convergence (Batty, 2009).

Given the traditional emphasis on land‑use and transport planning, the main urban models 
in policy use since Lowry (1964) are built on spatial interaction models (Batty, 1976; Wilson, 
1967). Effective and practical models have been created for assessing property development 
and transport options at detailed geographic scales through a close integration of the spatial 
interaction model with random utility theory (McFadden, 1974), national/regional input–
output tables (Leontief, 1986), land‑use and floorspace stock market models (Echenique, 
2004; Echenique et al, 1969), transport demand forecasting (Ben‑Akiva and Lerman, 
1985; Daly and Zachary, 1978; Domencich and McFadden, 1975), road traffic assignment 
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(Sheffi, 1985), GIS and big data analyses (Batty, 2010; Batty et al, 2013). Their strengths lie in 
the explicit incorporation of planning and infrastructure constraints and the incorporation of 
policy inputs over explicit time horizons. However, those models rarely address endogenous 
productivity growth or urban dynamics.

A second strand of models investigates general equilibrium of the spatial economy. The 
relationships between the economy, activity location, and transport costs have been a focus of 
new economic geography (Fujita, 1989; Fujita et al, 1999; Krugman, 1991; Venables, 1996) 
and of spatial general equilibrium models (Anas and Kim, 1996; Anas and Liu, 2007; Bröcker, 
1998; Ivanova and Tavasszy, 2007; Oosterhaven et al, 2001). Those models are focused on 
the effects of spatial costs on producers and consumers whilst giving a fuller representation of 
product varieties and economies of scale. Some models account for urban agglomeration and 
related productivity effects. Significant progress has been made in empirical model estimation 
(Redding, 2010). Production, trade, transport demand, and location are endogenously and 
mutually determined at spatial general equilibrium. Although, like the spatial interaction 
models, they can be used for discrete time horizons, existing spatial equilibrium models in 
their published form tend to focus on the end state rather than on the trajectories leading to 
the equilibrated state. Anas and Liu (2007) have introduced a dynamic property development 
sector within a general equilibrium model with exogenously determined total size of the 
city and of development. Dynamic general equilibrium models that represent intergeneration 
linkages and forward‑looking behaviour have been at an exploratory stage (see Bröcker and 
Korzhenevych, 2011) or on the longer term research agenda (Anas, 2013).

A third strand of models is focused on urban dynamics, which are either represented 
in the aggregate (Allen, 1997; Forrester, 1969; Simmonds, 2001; Wegener, 2001; Wilson, 
2000; Zondag and de Jong, 2011) or at a microlevel through cellular automata, agent‑based 
models, and other forms of microsimulation (Batty, 2005; Chapin and Weiss, 1968; Clarke, 
1996; Ingram et al, 1972). Microlevel dynamic models have been developed for land‑use 
activities (UrbanSim, 2011; Waddell, 2002) and traffic flows (Nagel et al, 1999). They offer 
insights into microscopic interactions among agents, particularly in property development 
and traffic management. They also introduce physical inertia explicitly. However, they are 
predominantly used for investigating mechanisms and system‑level emergence of microscopic 
interactions rather than for policy analysis (Batty, 2009), with a few exceptions such as those 
models developed by Wegener (2001), Simmonds (2001), Zondag and de Jong (2011), and 
UrbanSim (2011) which have been used for policy studies. A prominent feature of the applied 
models is their disregard for market equilibrium (Simmonds et al, 2013). It is clear that the 
needs of policy analysis will be better served if the model features could be applied across 
paradigms.(1) In particular, policy making requires not only insights into interdependencies at 
any point in time but also into how cities evolve.

In summary, cities facing major growth and restructuring would require planning models 
that can examine (1) implications of planned intervention on productivity, wages, and rents 
over policy horizons that relate to tenure lengths of mayoral offices; (2) effects of planning, 
building, and infrastructure constraints which are dominated by inertia and take decades to 
reach any equilibrated state if ever; and (3) dynamics of people and investment in response 
to prices, productivity, and citizens’ well‑being. In addition, such models should (4) be built 
upon technical data that most cities already have, such as censuses, input–output tables, urban 
traffic models, travel behaviour surveys, and any emerging big data. So far as we are aware, 

(1) Where such progress has been made, the results are promising: for example, in linking spatial 
interaction and general equilibrium modelling (de la Barra, 1989; Echenique, 2004), cellular automata 
with input–output modelling (eg, White et al, 2000), or incorporating principles of microsimulation 
within aggregate urban land‑use activity and stock modelling (Simmonds et al, 2013; Wegener, 2001).
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no models currently meet the above four requirements simultaneously, least of all in those 
emerging economies that matter the most to world poverty alleviation and sustainability.

1.3 Aims of this paper
The aims of this paper are (1) to present the design of a new, generic model that starts to 
incorporate the above four requirements simultaneously for practical urban applications; 
and (2) to test it on a wide range of archetypal development scenarios for insights into 
fundamental model assumptions, roles of key parameters, and the added value of the new 
method. The tests help to set a prioritised research agenda for empirical implementation for 
assessing individual projects and policy initiatives.

The paper provides a summary of the model and tests for model users whilst addressing the 
key concerns of specialist modellers. More specialist material on equations, data, algorithm, 
and tests are presented in a supplementary working paper (Jin et al, 2013).

2 Model design
We consider each model component in turn before linking them together. Key concepts are 
reviewed where the context requires but space does not allow a literature survey—for such 
surveys see Wegener (2005; 2011), Hunt et al (2005), Iacono et al (2008), and Batty (2009).

As it is a spatial model, locations are defined as discrete and contiguous zones; the model 
divides the world into two categories of zones: ‘internal’ ones that represent areas within a 
city region;(2) and ‘external’ ones for the city region to trade with and to exchange migrants, 
supercommuters, and investment funds with.

2.1 Components for a new model
We follow a widely shared convention between spatial interaction and general equilibrium 
models and classify the economy into producers which include private, public, and voluntary 
businesses; and final consumers which include households, governments, collectives, 
investors, and exports. We further follow that convention and consider trade in labour, goods, 
and services between locations which is determined simultaneously with prices at market 
equilibrium, subject to idiosyncratic circumstances. We follow nonequilibrium dynamic 
models and define the stock of existing urban activities, buildings, transport infrastructure, 
and land as stock constraints which may be updated periodically subject to background 
trends, inertia, investment, and planning regulations. Finally, we consider how boundary 
conditions—such as business relocation and household migration between internal and 
external areas and cross‑boundary investment—occur subject to prices, physical constraints, 
citizens’ well‑being, and idiosyncratic circumstances.

For simplicity, when the model components are discussed for one period only the time 
period subscripts t, t + 1, etc, are omitted; to account for flows of money (eg, production, 
consumption) and effort (eg, hours of labour, utility gains) all such quantities are defined in 
annual units unless noted otherwise.

2.1.1  Producers
The producers are represented by a set of production functions that define how they use 
capital, labour, properties, raw materials, and services, particularly how their input choices and 
productivity change with prices and externalities. A nested Cobb–Douglas–constant elasticity 
of substitution (CD‑CES) function has been broadly accepted as a standard for this purpose in 
spatial general equilibrium analyses since Krugman (1991) and Fujita et al (1999). We follow 
Anas and Liu (2007), who developed a leading urban general equilibrium model, and define 

(2) This is usually a reasonably self‑contained area for daily commutes.
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the production function as a variant of their CD‑CES specification:
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where Xj
n  is the output of industry n in zone j. The main inputs to production are capital K, 

labour L, buildings B, and intermediate inputs Y; and the function implies constant internal 
returns to scale of production through specifying the sum of cost share parameters for the 
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of buildings, a CES function is used to represent the substitution effects within each input, 
the elasticities of substitution being governed by parameters ni  and ng  . A j
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of the economic mass for producer n in zone j that represents Hicksian‑neutral total factor 
productivity effects resulting from learning and transfer of tacit knowledge (Graham and Kim, 
2008; Rice et al, 2006), which are an important component of urban agglomeration effects. 
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n  is a measure of the accumulated economic mass for industry n in location j; Li
w  is the 

total size of employment of type w that is relevant to industry n in zone i; dij  is the economic 
distance from location i to location j; and \> 0 is a distance‑decay parameter. Finally, E j

n  is 
a constant scalar representing any additional zonal effects on total factor productivity, which 
is to be calibrated empirically.

The production function (1) differs from that of Anas and Liu (2007) in two ways. First, 
an economic mass function A j

n  is introduced to represent increasing external return to scale 
in production: that is, those urban agglomeration effects that arise from land‑use and transport 
changes.(3) Secondly, labour and intermediate inputs enter the production as quantities by 
zone rather than by zone pair. This makes it easier to calibrate the models empirically, 
because zonal observations are much more easily found; also the production function is more 
readily interfaced with existing social accounting matrices (Echenique et al, 2013) and four‑
step transport models for commuting and for goods transport (see subsection 2.1.3).

Each type of labour and of intermediate inputs consists of commuters and goods/services, 
respectively, supplied from all available model zones i (including i = j); the sourcing of those 
inputs among zones is modelled through spatial interaction. Each type of building stock in 
zone j is fixed for the period and updated in the following period as a result of obsolescence, 
renovation, new construction, etc represented in a recursive model (see subsection 2.1.4).

We follow standard assumptions that producers are cost minimisers under budget 
and input supply constraints, and operate with zero economic rent and constant internal 
returns to scale. The price of goods or service n produced in zone j can then be derived as 
an average and marginal cost. In turn, given Xj

n , the demands for inputs of capital, labour, 
buildings, and intermediate inputs can be derived from equation (1).(4) Imports into the city 
region are included as external production.
(3) When such agglomeration effects are strong the model could produce multiple equilibria 
(Anas and Kim, 1996). Here we expect the parameter π for most cities to be generally below 0.1 
(Graham and Kim, 2008; Rice et al, 2006; Rosenthal and Strange, 2004). Zhu (2012) has tested 
parameter π in the range 0.0–0.2 for primary and secondary industries, and 0.0–0.4 for tertiary 
industries with a model calibrated for southern England and found that a single quilibrium exists 
from a reasonable range of alternative input values. The higher the π value, the more is required in 
calibration to check for possible multiple equilibria.
(4) For further equations and discussions, see Jin et al (2013). This split between summary and detail 
also applies to the rest of this paper.
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2.1.2  Final consumers
For the final consumers, we model household choices and leave government budgets, other 
collective spending, investment decisions, and exports as scenario inputs. The reconciliation 
between production output (subsection 2.1.1), budget, spending, and investment is a policy 
decision that should be made explicit as model input. On the other hand, inward investment and 
export levels may be recursively updated to reflect productivity and prices in the city region.

Household choices here refer to how households source goods and services, choose 
where to live, and, in the case of working households, determine how to divide time between 
work and leisure on the basis of utility, prices, and externalities. Households are assumed to 
maximise utility under constraints of income and time. We follow Anas and Rhee (2006) in 
including households’ consumption of leisure time as well as goods, services, and housing:
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where Vi
H  defines the economic well‑being for household type H which is derived from 
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services of type m in zone i; similarly bi
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H Ha b c+ + =` j/ , are parameters for consumption in goods/services, housing, and 
leisure time, respectively; and Hg  is a parameter for the nested CES function for choosing 
among housing varieties. Household consumption utility increases not only through 
consumption, but also through a rise in the number of varieties of housing available for better 
matching with needs. Households may also trade off consumption against leisure time.

Households’ demands for consumption and leisure time are derived through the household 
budget and the level of incomes, prices, and rents.

 
The households may be segmented by 

socioeconomic profile, life‑cycle, size, etc,

2.1.3  Location choices and trade patterns
In many cities, commuting, shopping, and goods delivery patterns and residential location 
choice have already been modelled by spatial interaction models that are embedded in 
transport models, often with a richness in market segmentation and behavioural calibration 
that is worth building upon. The zonal production and consumption functions defined above 
facilitate a relatively easy interface with spatial interaction models. Following the random 
utility interpretation of such models (McFadden, 1974), if the location utility for obtaining 
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where j
mnZ  is the total demand for input m by user n in zone j; Si

m  is a size term that corrects 
for the bias introduced by the uneven sizes of zones in the model (see Ben‑Akiva and Lerman, 
1985); and mm  is a scale parameter that measures the concentration of trade among alternative 
sources which is empirically calibrated along with parameters ij

m}  and i
mW .
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More specifically, for sourcing of goods and services, pi
m

i
mo =- , where pi

m  is the factory‑
gate price for goods m(5). This applies to both intermediate and consumer goods/services, 
including the special cases where the services are travel for leisure and personal business. 
Commuter households choose where to live based on Vi

m
i
Ho =  and on dij

m  , a generalised cost 
function for commuting. For noncommuter households, equation (3) is relevant only in cases 
where their residential locations are determined by previous commuting choices.

An important aspect of spatial choice that has been overlooked in both urban general 
equilibrium models and land‑use and transport interaction models at the city‑region scale is 
the formulation of the dij

m  function. City regions with a reasonably self‑contained commuting 
catchment today tend to have a radius of 50 km or more. At this metropolitan scale, extensive 
analyses of travel choices data show that a dij

m  function that is linear to travel costs and 
times will have great difficulties in representing realistic demand elasticities throughout; 
a nonlinear, Box–Cox transformation of utilities is required (Gaudry and Laferrière, 1989). 
Fox et al (2009) put forward a log‑linear transformation that is a close equivalent to the Box–
Cox function whilst being easier to calibrate. This function should fit, in the form:
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where the ijk
mn\  are the attributes of travel, such as cost or time, and the k

mnh  and am  are 
parameters.

2.1.4  Stock constraints
We define stock constraints in line with Wegener (2001) to cover not only land, buildings, 
and transport infrastructure but also existing urban activities such as job and home locations 
which may evolve or ‘churn’ slowly. For instance, there may be a lag of many years 
between a utility change and household relocation. For each period, only a proportion of 
the existing households will be ready to move. Whilst the commuter households make their 
choices according to equation (3), the moving noncommuter households face the utility level 
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H  is a measure of perceived distance from zone i to zone j. We thus obtain a discrete 
choice model:
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At spatial equilibrium, the demand for all types of buildings stock, Bi
k  and bi

k , must 
be equal to available supply, B j

k|  and b j
k| .  B j

k|  and b j
k|  , as well as the associated land supply, 

respond to demand through development/restructuring but subject to regulation, planning, 
speculation, procurement, construction/renovation, commission and decommission, and 
inertia. It is thus more appropriate for a model user to specify detailed estate development 
plans, subject to expected rental revenue and costs. The model can then account for the 
asymmetry between growth and decline—for example, in the case of business buildings:
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(5) Here we present a simplified model by assuming that input m is shipped straight from zone i to 
zone j. The logistical channels may be added through a supply‑chains model consisting of a series of 
random utility models for intermediate logistical stages; for an application to the UK, see WSP UK 
Ltd (2005).
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In equation (6), as the total building demand for type k in zone j increases, the existing 
building stock is depleted by ( )0 1j

k
j
kG GY Y  through demolition and conversion, and the 

user‑specified building stock increment at period ,t B1 ( )
j
k t 1+ +v , is added for period t + 1. 

In equation (7), as the total demand falls, the user‑specified building increment does not 
materialise, and the existing building stock is depleted by ( )0 1j

k
j
kG GY Y . In other words, 

when building demand increases, the user‑specified plan is adopted; if demand falls, the 
existing stock will reduce through depletion, and the user‑specified plan is left unimplemented. 
Similar equations may apply to housing or urban land. The equations reflect the indivisibility 
of user’s development plans (ie, all or nothing for the new stock increment) and can be 
further refined as proposed by Glaeser and Gyourko (2005).

Similarly, transport infrastructure and services respond to demand subject to regulation, 
planning, procurement, construction/renovation, commission and decommission, and thus 
respond to demand slowly and indivisibly. Like land and buildings, user‑defined transport 
supply scenarios are likely to be the most appropriate subject to transport revenues and costs; 
the growth/decline asymmetry can be applied: that is, new projects are implemented only 
in the test if the related demand grows.

2.1.5  Boundary conditions
External shocks cover decisions that at least partly depend upon factors outside the city 
region. Business investment and household migration across the city region boundary are 
such examples. Naturally, external shocks are case dependent. Traditionally external shocks 
are exogenous, scenario inputs. Nevertheless, policy makers are interested in how changes 
within a city region may trigger certain shocks under prevailing external conditions.

For such decisions we continue to follow the notion of utility: U V f= +I I I , where VI  is 
the measurable average utility for the city region as a whole, and fI  is a Gumbel‑distributed 
error term. This leads to a discrete choice model
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where VI  predicts the activity (eg, migrants or investment) that chooses the city 
region, and SI  is a size term. All terms with an E subscript denote corresponding values 
assumed for the external area. Under this random utility framework which accounts for 
idiosyncratic circumstances through parameter mI E- , we may define a migration function 
V V V d

( ) ( ) ( ) ( )H Mt M t t t= = -I I I I E-
r  for migration choices subject to average household utility 

V H
I
r  and migratory distance dM

I E-  at period t, and a business floorspace investment function 
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r r r  that consists of expected rentals RB

I
r  , average 

production cost pIr , and productivity effects from the economic mass ( )ln Mr I
r  at period t.

2.2 Model assembly
Central to model assembly is the fact that urban change processes vary over time scales 
(Simmonds et al, 2013; Wegener et al, 1986). Some processes adapt quickly to constraints and 
are thus amenable to equilibrium modelling, such as producer and household relocation 
and transport choices; others are more inertia prone, lumpy, and indivisible, such as estate 
development, transport supply, and life‑cycle churns of producers and households.

Existing spatial interaction and general equilibrium models, to a varied extent, all adopt 
a strategy to solve for equilibrium quantities and prices subject to exogenous constraints; 
the equilibrium condition provides a consistent platform for comparing alternative policy 
interventions at each time horizon, but such models rely on exogenous scenarios to articulate 
trajectories between time horizons. Nonequilibrium dynamic models offer insights into the 
effects of life‑cycles, churns, and inertia on temporal trajectories, but have to rely on an 
interface with other models with an equilibrium mechanism (most often a transport model) 
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to assess any costs and benefits. Cities facing large urban change require both cross‑sectional 
assessment of prices, rents, and wages and the cumulative effects of urban evolution. This 
calls for a more radical interface between equilibrium and nonequilibrium models. An 
appropriate articulation of the model components has to be considered for model calibration, 
validation, and forecasting.

Calibration of a recursive model requires not only a representation of the city region at a 
base year t, but also at least one transitional period to the next horizon t + 1, preferably more. 
For calibration at base year t, all boundary conditions and constraints including the activity 
stocks are needed as inputs, as are the quantities and prices of goods and services, labour, 
buildings, land, and trade patterns. The model estimates the demand for goods and services, 
labour, buildings, land, travel, traffic flows, and all associated prices based on input boundary 
conditions, stock constraints, and an initial set of model parameters that are derived through 
successive partial equilibrium model estimations (see the left‑half of figure 1). The solution 
algorithm proceeds iteratively through each of the markets until all demand and prices reach 
equilibrium. The model predictions are compared with known zonal quantities and prices to 
refine the parameters. The model parameters are then retained for use for period t + 1.

For transition to period t + 1, the known changes in boundary conditions, stock constraints, 
and associated knowledge on policy interventions are used to establish recursive models that 

Figure 1. Main information flows within and between recursive spatial equilibria.
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predict boundary conditions and stock constraints for period t + 1. The recursive models 
may include one‑off events which enter as period‑specific constants. The spatial equilibrium 
model is run in forecasting mode for period t + 1. The model predictions are validated through 
comparing with known zonal quantities and prices for period t + 1 which have not been used 
in model calibration. The recursive and spatial equilibrium model calibration may have to be 
repeated many times in a calibration–validation loop until a satisfactory goodness of fit has 
been achieved (see the right‑hand half of figure 1).

Ideally, more than one known transition period exists so that the recursive models for 
boundary conditions and stock constraints can be tested repeatedly, and the model builds 
up a validated track record. In practice, it is rarely feasible to trace back more than one 
historic period for data problems and modeller resources. An effective way to achieve multiple‑
period validation may be to retain existing models and extend them through time, and use 
the successive model development exercises to extend the series of recursive models. From 
period ( )t n n 2H+  the model will be used in forecasting mode. The recursive and spatial 
equilibrium models share the same running procedure as for model validation at period t + 1.

Whilst the spatial equilibrium model for each horizon ( )t n n 0H+  is a static equilibrium 
model, the recursive model representing the transition of boundary conditions and stock 
constraints are nonequilibrium in nature. Although the recursive models are perhaps the most 
uncertain to begin with, their outputs for transition between time horizons are nevertheless 
made plain to see by all model users. In fact, in the case of forecasting, the model users may 
wish to intervene and revise the projections, either at the city‑region level or for specific 
zones, as a form of scenario design. Nevertheless, a gradual establishment of evidence‑based 
recursive models is particularly useful for radical development and restructuring scenarios—
however much they are interested in such scenarios, the far‑sighted decision makers might 
not want to be seen specifying them for political reasons.

The number of years elapsed between two modelled time horizons is a local matter. The 
standard assumption of the recursive model is that an urban administration goes through 
a stereotypical cycle from new initiatives to policy implementation and ultimately to the 
lame‑duck phase: in such cases, the majority of the stimuli to boundary condition and stock 
constraint changes would occur early in the period; producers and consumers then adapt 
before the next round of radical changes. However, development cycles are hardly universal, 
and the time horizons are heavily constrained by data availability (eg, the census years) and 
masterplan horizons. Locally specific considerations are thus crucial in determining the 
period length. In our experience, ten or more years may be required for development and 
restructuring effects to work through producer and consumer choices. This is true even during 
the recent fast growth in China since the late 1970s, where distinct policy cycles are generally 
around ten years (Zhang, 2010).

2.3 Model outputs for policy assessment
The model outputs are quantities (production, factor inputs, and consumer demand) and prices 
(of goods/services, wages, and rents) in each zone, and movements of people and goods/
services between zones. A multimodal transport model or a collection of unimodal traffic 
models need to be incorporated to estimate travel demand, costs, operation characteristics, 
and congestion/overcrowding levels. The outputs provide the basis for assessing economic, 
social, and environmental benefits (Echenique et al, 2012).

In the model, two types of prices are accounted for in parallel under spatial interaction: 
the consumption price of inputs that come from different zones are calculated as an average of 
the delivered prices weighted by respective trade volumes; the average utilities of the inputs 
are calculated as a log‑sum (Ben‑Akiva and Lerman, 1985; Williams, 1977) of the delivered 
prices.
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Household utility is not linear in income and the marginal utility of income varies between 
policies and among zone pairs of spatial interaction (Anas and Rhee, 2006). The overall 
consumer surplus, ΔC, in the city region as a household well‑being measure may be defined 
as the change in average household utility divided by the average marginal utility of money:

C V V 2
1 1 1Alternative Base

Alternative BaseT
X X

= - +^ ah k: D  ,  (9)

where V Base  and V Alternative  are the average household utilities, and Base
X  and Alternative

X  are 
the average household incomes for the Base and Alternative scenarios, respectively.

3 Model tests
Although the model components follow three well‑established model traditions, the new 
model design still needs thorough in‑lab testing. This is because, first, the interactions 
between the recursive and equilibrium components create many new mechanisms that do not 
exist in current models. Secondly, an understanding of the range and uncertainty of parameter 
values helps to develop a prioritised agenda for empirical model estimation. Thirdly, large‑
scale urban change may be a challenge for the spatial equilibrium model to converge.

We set up test model code in MatLab (The MathWorks Inc.) with a flexible zone 
dimension. When it is used for a one‑zone model, all model results may be traced easily by 
hand. Here we use a model with twelve zones which retains the fundamental features of a 
city region and can represent archetypal urban development strategies, in order to pressure‑
test the model with easily manageable data tables. We present the key results here and further 
details are to be found in Jin et al (2013).

We specify a narrow peninsular city region with the following zones: (1) an older, denser 
city centre at the cape where businesses concentrates with limited housing; (2) a built‑up 
inner city with both homes and jobs; (3) a contiguous outer urban area where housing 
dominates; (4) a greenbelt where development has been restricted; (5) a far suburb beyond 
the greenbelt with multiple commercial centres scattered among towns and villages; (6) a 
wider rural hinterland which is sparsely populated (figure 2). We further distinguish a free‑
standing city in the far suburb, and five small areas which are the main catchment of large rail 
stations—we code them as zones 10 and R1–R5 respectively. The spatial configuration of 
this model has made land‑use patterns more explicit, but otherwise it follows the tradition 
of the ‘long narrow city’ of Solow and Vickrey (1971), applied, for example, by Anas and 
Kim (1996) and Eliasson and Mattsson (2001).

To make the data flows easy to trace in a complex model, we make a number of 
simplifications. We assume that the total population in our city region is 1 million at time t 
(say 2010). There are nine other city regions of the same size in the country (thus the total 
number of households in the country is 10 million), although there are none nearby.(6) 
Periodically, households in other city regions as well as this one compare their well‑being 
and make decisions to migrate between them. The city regions altogether face a population 
growth of 2.5 million per decade, thus doubling at period t + 4 (2050) to 20 million. The 
boundary conditions are migration subject to average household migration utilities VIL  and 
business floorspace investment subject to attractiveness function VIB  (see subsection 2.1.5). 
It is also subject to the reservation utility for the rest of the country, VE . The solving algorithm 
of the spatial equilibrium model is shown in figure 3.

We define one type of household. Each household supplies one worker who fills one job. 
Trade across the city region boundary is zero; the workers produce a product that is entirely 
consumed by the households in the city region. The households also own the estate properties 

(6) If there are, the internal modelled area shown in figure 2 may be expanded to include them.
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Figure 3. Model‑solving algorithm.

Figure 2. The model area, transport links, and zone numbers. Diagram not to scale; physical dimensions 
are specified by land‑use and transport data.
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collectively and share out the rental income equally. We assume an average household wage 
income of around £12 000 (or US $18 000) per year.(7) There are two types of housing (houses 
and apartments) and two types of business floorspace (bespoke and generic).

3.1 Model parameterisation
We take parameter values from established models. Where there are no commonly accepted 
parameters we carry out sensitivity tests in the model and adopt value ranges by judgment. 
Table 1 lists the model parameters that have been specified in the equations.

(7) This income is supplemented by shared rental income, implying an average household income of 
£21 000; this represents a reasonably affluent profile that the leading emerging economies are currently 
aiming towards.

Table 1. Model parameters and their sources.

Model parameter Value(s) Sources

n
d  (labour cost share) 0.86 Anas and Rhee (2006)

n
n  (business floorspace cost share) 0.14 Anas and Rhee (2006)

n
o  (capital cost share) 0.00 Anas and Rhee (2006)
mnc  (intermediate inputs cost share) 0.00 Anas and Rhee (2006)
ng  (business floorspace variety effects) 0.90 Own sensitivity tests
E j

n  (residual total factor productivity 
multiplier)

1 Anas and Rhee (2006)

r  (economic mass effects on productivity) 0.05‑0.10 DfT (2006); Graham and Kim (2008)
a (household utility parameter for goods/
service)

0.36 Anas and Rhee (2006)

b  (household utility parameter for 
housing)

0.15 Anas and Rhee (2006)

Hc  (household utility parameter for leisure 
time)

0.49 Anas and Rhee (2006)

Hg  (housing variety effects) 0.90 Own sensitivity tests
mm  (scale parameter for spatial interaction 

model)
1 Calibrated to reproduce an average 

commuting distance that is compatible 
with mid‑income commuters in the 
London region in 1991 (Jin et al, 2002), in 
conjunction with am  below

, , ,ij
m

i
m

ij
H

j
H} }W W  (zone‑specific 

attractiveness)
0 for all 
i, j

The zones are featureless other than 
represented by land‑use and transport data

am  (log–linear travel cost function 
parameter)

0.0005 See above

k
m
h  (log–linear travel cost function 
parameter)

500 A multiplier to converts travel costs and 
times of one trip to annual (2 trips a day, 
250 days a year)

j
kY  (building stock depletion) 0 Building stock depletion is not included 

here for simplicity
I E
H
m (scale parameter for household 
migration model)

1.0‑4.0 Own sensitivity tests

I E
B
m  (scale parameter for business 
floorspace investment model)

1.0 Own sensitivity tests

Total number of working days a year 250 Anas and Rhee (2006)
Hours per day 24 Anas and Rhee (2006)
Cost for delivering a unit of local service 
as percentage of commuting trip cost

10% Anas and Rhee (2006)
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3.2 Model runs
We present three types of run to highlight the key features of the model: (1) the base year t 
which represents 2010; (2) a set of static equilibrium runs for period t + 4 (2050) with given 
boundary conditions; (3) a set of recursive equilibrium runs from 2010 to 2050.

Figure 4. Floorspace constraints by zone in year t (2010): (a) business, (b) housing.
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Figure 5. Model output quantities and prices by zone, in year t (2010): (a) production output; (b) product 
prices; (c) business rents; (d) housing rents; (e) number of jobs; (f) number of households; (g) wages 
(home location); (h) consumption per household; (i) consumption utilities; (j) commuter location utilities.
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3.2.1  Model run for t (2010)
The model starts with inputs of transport supply, stock of housing and business buildings 
(figure 4), stock of households and jobs, and boundary condition (total households = 
1 million) at time t (2010) for a static spatial equilibrium run. The output activity stock in 
this case equals the input; the model also outputs prices, rents, wages, and household utilities 
by zone (figure 5). Through the interface with the transport model, the travel distances, costs, 
and times incurred by labour and product flows are computed (which are summarised in 
figure 6). The model outputs depict a polycentric city region where the densely built‑up areas 
have short average travel distances, long travel times, and high rents; the reverse is the case 
in the suburbs.

3.2.2  Static spatial equilibria for 2050
Before running the model recursively, we tested the spatial equilibrium component by static 
runs for four archetypal scenarios: (1) trend growth which targets development opportunities 
through inner‑city regeneration and greenfield development beyond the greenbelt, (2) compact 
development of existing built‑up areas without new greenfield land supply, (3) expansion of 
garden suburbs outside built‑up areas at prevailing suburban densities, and (4) densification 
around urban rail hub locations which is an upscaled version of transit‑oriented development. 
For these static runs we assume that the city region will grow at the country‑average rate: that 
is, doubling the number of households to 2 million in 2050. Half of the expected floorspace 
construction will be natural growth which occurs pro rata to existing zonal stock, and the 
remainder is specified by the respective planning scenarios.

For each scenario (2)–(4), three variants are tested: (a) maintaining the status quo: average 
floorspace per household and per job, and average travel costs and times remain unchanged 
from 2010;(8) (b) scale of floorspace construction following zonal profiles per household and 
per job under each planning scenario: 30% less per household and per job in dense built‑up 
zones and 30% more in suburban and rural zones; (c) accompanying traffic speeds following 
zonal profiles in addition to zonal floorspace profiles: in the case of compact development 
and garden suburbs, traffic congestion worsens—average intrazonal travel times increase by 
5 minutes, and the access times to and from those zones increase by 10 minutes per trip; in 

(8) This follows pragmatic policy targets used in many cities where infrastructure investment aims to 
keep network speeds on main transport corridors constant, through expanding network capacity and 
services, and peak time traffic management.

Figure 6. Model output average trip distances, travel costs, and travel times by purpose by zone, in 
year t (2010) for: (a) commuting—by home origin; (b) commuting—by workplace; (c) goods and 
services—by household location.
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the case of rail hub developments, the intrazonal travel times remain unchanged, whilst the 
interzonal travel times to and from the rail hubs reduce by an average of 5 minutes thanks to 
a combination of improved headways of rail services and station access.

Using parameters from established models, the spatial equilibrium tests reveal stark 
differences among the scenarios and variants by working through the full implications of the 
supply constraints on prices, wages, rents, household utility, consumer surplus, and economic 
mass. Table 2 shows that floorspace and traffic congestion could reduce household welfare 
by an equivalent of 4.4% of average income whilst reducing per employee productivity by 
0.6%–1.3% under the compact variant (c); better housing and business floorspace supply 
without worsening traffic congestion could raise household welfare by 7.4% of income 
whilst improving per employee productivity by 1.8% under the garden suburbs variant 
(b) (figures 7 and 8). The results are corroborated in nature by studies of real city regions 
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Figure 7. Housing floorspace inputs to 2010 and 2050 static equilibrium tests.

Figure 8. Business floorspace inputs to 2010 and 2050 static equilibrium tests.
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(see Echenique et al, 2012). The most complex responses appear to be with the rail bub 
developments of which the overall impacts on welfare and productivity are very sensitive to 
detailed input specifications, with household welfare changes varying from 0.7% to −4.7% 
of average income, and −0.2% to 0.8% for productivity effects across variants (a) to (c). 
Figure 9 presents the implications of economic mass under the scenarios with different land‑
use and transport configurations.

The significant differences in household utility levels among the scenarios show that the 
assumption of a constant 2 million household size across scenarios may not be realistic. We 
now turn to this question by incorporating a recursive model for the boundary conditions.

3.2.3  Recursive spatial equilibria (RSE): trend growth and rail hub tests: 2010–2050
The RSE needs first to start with a baseline scenario, which we define as trend growth. The 
boundary conditions are total households in the city region and total new business floorspace 
investment. Without affecting generality, we assume that our city region leads the country 
by a decade: that is, the external reservation household location utility is equal to that for 
our region a decade earlier. As there are no consensus recursive model parameters, we 
present tests with household relocation parameter I E

H
m  = 1.0 and 4.0 whilst keeping business 

floorspace investment parameter I E
B
m  constant at 1.0. Both boundary conditions are predicted 

through equation 8. New housing and business floorspace construction plans are then linked 
to household growth and business floorspace investment, respectively; zonal floorspace 
supply is subject to the asymmetric build‑out (see subsection 2.1.4).

We then set up finer‑grained variants for the rail hub scenario: (i) transport access to the 
five hubs is gradually improved with average access times shortened by 1, 2, 4, and 6 minutes, 
respectively, for each decade 2010–50; (ii) transport improvements delayed by a decade, 
so average access times are 1, 2, and 4 minutes shorter for respective decades 2020–50; 

Figure 9. Zonal indices of economic mass: 2010 and 2050 static equilibrium tests.
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Figure 10. Summary of the household growth trajectories 2010–50 under recursive spatial equilibria (i): 
trend growth and rail hub scenarios ( I E

H
m  = 1.0 and I E

B
m  = 1.0) for: (a) household location utility; 

(b) total number of households by year.
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Figure 11. Summary of the household growth trajectories 2010–50 under recursive spatial equilibria (ii): 
trend growth and rail hub scenarios ( I E

H
m  = 4.0 and I E

B
m  = 1.0) for: (a) household location utility; 

(b) total number of households by year.
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(iii) access conditions remain as in 2010; (iv) gradually worsening access, the reverse of (i); 
(v) reduced business and housing floorspace diversity—instead of a 50:50 balance between 
the floorspace stock varieties, the balance is 90:10; this builds on test (iv); (vi) the floorspace 
completion rate in the hubs reduces by 50%, otherwise the inputs are the same as (v).

As one would expect from equation (8), the results show that when I E
H
m  is small the share 

of population in our city region follows more closely the historic household share, and the 
growth trajectories form monotonic trajectories around trend growth, the city region variously 
reaching 2 million to over 4 million households. Figure 10 shows both the evolution of 
average household location utility [figure 10(a)] and the resultant total household size change 
[figure 10(b)]. As in equation 8, the location utility of period t predicts the total household 
size of period t + 1. As I E

H
m  increases to 4.0, the relocation decisions become more sensitive 

to household utility changes and the cumulative effects range from a dramatic growth in 
excess of 6 million by 2050 to a radical reversal of growth to under 1.2 million (figure 11). 
This does not only lead to changes in prices, wages, rents, household utility, consumer 
surplus, and economic mass at the zonal level in a way that cannot be predicted by static 
spatial equilibria; it also predicts qualitatively different city sizes (2 million to over 4 million) 
in terms of economic mass and productivity, even with relatively low values of I E

H
m  = 1.0.

In the test model, all households can relocate in response to relocation utility levels subject 
to their idiosyncratic tastes. We have also carried out tests where the majority of households 
are subject to churns in their life‑cycles and are not free to relocate in each time period. 
However, because our city region is experiencing 100% growth over the whole period, the 
conclusions reached above still hold if there is a reasonable activity churn rate.

4 Discussions
We return here to the questions posed by Volterra and CBP (2007). The analysts’ aspiration to 
examine “the links between productivity, wages and rents and the full implications of these 
for output growth” could be met through a general equilibrium model; the difficulty lies 
with a spatially detailed application to answer their follow‑up questions about behavioural 
responses, trade patterns, etc, Our proposed interface with detailed transport and traffic models 
brings spatial equilibrium models into play in assessing individual projects and initiatives.

“[Testing] that the models we use reflect the world in which we operate” links to growth 
trajectories. It is clear that the priority for model estimation has to be empirically robust 
models for recursive updating of the boundary conditions and stock constraints, which could 
generate qualitatively distinct urban futures which are of critical importance to major urban 
infrastructure and land‑use decisions.

We acknowledge our enormous intellectual debt to three distinct modelling traditions. 
The proposed model has a fairly parsimonious structure and a relatively small number of 
parameters. Nevertheless, whether they are ‘deep’ parameters (9) will yet depend on model 
segmentation in empirical applications. There is already a wealth of literature regarding 
the likely values/ranges of some parameters. However, building a consensus on all the key 
parameters has far to go, particularly for the recursive models. Extensive ‘in‑lab’ tests of the 
parameters would seem useful in guiding further work with the empirics.

5 Conclusions
The new RSE model combines two features that are required by policy makers: (1) it enables 
simulation of urban evolution trajectories that the existing equilibrium or nonequilibrium 
models cannot produce in isolation, and (2) it quantifies impacts of policy interventions on 
a consistent basis for a given time horizon. These two features cannot be simultaneously 

(9) In the sense that parameters are invariant across the policy scenarios of interest (Lucas, 1976).
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achieved by existing models. The proposed model has also incorporated new elements that 
enable the modelling of productivity effects of land‑use and transport interventions, and 
a more precise handle on city‑region‑scale travel choice behaviour through a log–linear 
travel utility transformation. However, a recursive use of static spatial equilibrium models 
over successive policy horizons is but a very small and experimental step towards dynamic 
equilibrium modelling and much remains to be done.
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